Number Series Advanced

Key Concepts

# Concept Explanation
1 Difference Pattern Observe the constant or changing difference between consecutive terms.
2 Multiplication/Division Identify if each term is multiplied or divided by a fixed or changing number.
3 Square/Cube Series Terms are squares or cubes of natural numbers or their variations.
4 Prime Number Series Terms are prime numbers or related to them.
5 Alternate Series Two or more independent series are merged into one.
6 Fibonacci-type Each term is the sum of the two preceding terms.
7 Digit-based Logic Pattern lies in the digits, not the number (e.g., sum of digits, reverse).
8 Mixed Operations Combination of two or more operations (e.g., ×2+1, ×3–2).

15 Practice MCQs

1. 5, 7, 10, 15, 22, ? **Options:** A) 29 B) 31 C) 33 D) 35

Answer: C) 33
Solution: Differences: +2, +3, +5, +7 (consecutive primes). Next prime is 11 → 22+11=33
Shortcut: Spot prime gaps quickly.
Tag: Prime difference

2. 3, 8, 18, 38, 78, ? **Options:** A) 148 B) 158 C) 168 D) 178

Answer: B) 158
Solution: ×2+2 pattern: 3×2+2=8, 8×2+2=18 … 78×2+2=158
Shortcut: Check ×2±k first.
Tag: Mixed operation

3. 1, 4, 9, 16, 25, ? **Options:** A) 30 B) 36 C) 42 D) 49

Answer: B) 36
Solution: Perfect squares: 1², 2² … 6²=36
Shortcut: Visualise square grid.
Tag: Square series

4. 2, 3, 5, 9, 17, ? **Options:** A) 31 B) 33 C) 35 D) 37

Answer: B) 33
Solution: Differences double: +1, +2, +4, +8 → next +16 → 17+16=33
Shortcut: Powers of 2 in gaps.
Tag: Double difference

5. 1, 1, 2, 3, 5, 8, ? **Options:** A) 11 B) 13 C) 15 D) 17

Answer: B) 13
Solution: Classic Fibonacci: add previous two.
Shortcut: Remember 1-1-2-3-5-8-13-21…
Tag: Fibonacci

6. 6, 12, 24, 48, 96, ? **Options:** A) 144 B) 192 C) 168 D) 180

Answer: B) 192
Solution: Simple ×2 chain.
Shortcut: Count doubling steps.
Tag: Multiplication

7. 27, 64, 125, 216, ? **Options:** A) 243 B) 343 C) 512 D) 289

Answer: B) 343
Solution: 3³, 4³, 5³, 6³ → 7³=343
Shortcut: Cube table 1-10.
Tag: Cube series

8. 4, 7, 12, 19, 28, ? **Options:** A) 37 B) 39 C) 41 D) 43

Answer: B) 39
Solution: Differences: +3, +5, +7, +9 → next +11 → 28+11=39
Shortcut: Odd-gap series.
Tag: Odd difference

9. 1, 8, 9, 64, 25, ? **Options:** A) 216 B) 121 C) 144 D) 169

Answer: A) 216
Solution: Alternate squares & cubes: 1², 2³, 3², 4³, 5² → 6³=216
Shortcut: Odd pos square, even pos cube.
Tag: Alternate operation

10. 5, 10, 13, 26, 29, ? **Options:** A) 58 B) 56 C) 54 D) 52

Answer: A) 58
Solution: ×2, +3, ×2, +3 … 29×2=58
Shortcut: Spot ×2+3 cycle.
Tag: Cyclic operation

11. 9, 18, 15, 30, 27, ? **Options:** A) 45 B) 54 C) 51 D) 48

Answer: B) 54
Solution: ×2, –3, ×2, –3 … 27×2=54
Shortcut: Alternating ×2–3.
Tag: Alternating op

12. 2, 5, 11, 23, 47, ? **Options:** A) 95 B) 97 C) 99 D) 101

Answer: A) 95
Solution: ×2+1 each step: 47×2+1=95
Shortcut: Remember ×2+1 family.
Tag: Mixed operation

13. 1, 4, 10, 22, 46, ? **Options:** A) 92 B) 94 C) 96 D) 98

Answer: B) 94
Solution: ×2+2, ×2+2 … 46×2+2=94
Shortcut: Same as Q2.
Tag: ×2+2

14. 3, 7, 15, 31, 63, ? **Options:** A) 125 B) 127 C) 129 D) 131

Answer: B) 127
Solution: ×2+1 throughout: 63×2+1=127
Shortcut: Close to 2ⁿ–1.
Tag: ×2+1

15. 12, 15, 21, 33, 57, ? **Options:** A) 105 B) 99 C) 111 D) 108

Answer: A) 105
Solution: Differences: +3, +6, +12, +24 (×2) → next +48 → 57+48=105
Shortcut: Geometric difference.
Tag: Double gap


Speed Tricks

Situation Shortcut Example
Constant ×2 Just keep doubling 3→6→12→24…
×2±k seen twice Apply same to next 5→11→23→47… (×2+1)
Prime gaps Recall primes ≤30 2,3,5,7,11,13,17,19,23,29
Squares 1-20 Memorise 1,4,9,16…400
Cubes 1-10 Memorise 1,8,27…1000

Quick Revision

Point Detail
1 Always compute first 2-3 differences immediately.
2 If differences rise sharply, suspect multiplication or square/cube.
3 Two interleaved series? Check odd & even positions separately.
4 Same number added→constant difference; doubling difference→×2 gap.
5 ×2±1, ×2±2 are RRB favourites—spot them fast.
6 Prime-gap series: differences list = primes.
7 Digit sum pattern: ignore place value, add digits.
8 Fibonacci seed 1-1-2-3-5-8-13-21-34.
9 Squares end 0,1,4,5,6,9; cubes can end any digit.
10 Time-saver: once pattern locks, extend one step only—answer is that next term.