Algebra Formulas

Algebra Formulas – 60-Second Revision Sheet

Must-Know Identities

  • (a+b)² = a² + 2ab + b²
  • (a−b)² = a² − 2ab + b²
  • a² − b² = (a−b)(a+b) (difference of squares = “minus-plus trick”)
  • (a+b)³ = a³ + b³ + 3ab(a+b)
  • (a−b)³ = a³ − b³ − 3ab(a−b)
  • a³ + b³ = (a+b)(a² − ab + b²)
  • a³ − b³ = (a−b)(a² + ab + b²)
  • (x+a)(x+b) = x² + (a+b)x + ab

Linear Equation Pair

  • ax + by = c & dx + ey = f
    Cross-method: x = (ce-bf)/(ae-bd), y = (af-cd)/(ae-bd) (write → ✕ cancel)

Quadratic Equation ax² + bx + c = 0

  • Roots: x = [−b ± √(b² − 4ac)] / 2a
  • Discriminant D = b² − 4ac
    • D > 0 → real & distinct
    • D = 0 → real & equal
    • D < 0 → complex

Indices (Powers) – 5-Law Kit

Law Trick Example
aᵐ · aⁿ = aᵐ⁺ⁿ “plus while multiplying” 2³·2⁵ = 2⁸
aᵐ / aⁿ = aᵐ⁻ⁿ “minus while dividing” 5⁷/5² = 5⁵
(aᵐ)ⁿ = aᵐⁿ “power-on-power → multiply” (3²)⁴ = 3⁸
a⁰ = 1 (a≠0) “zero power = hero 1” π⁰ = 1
a⁻ᵐ = 1/aᵐ “minus flips down” 4⁻² = 1/16

Surds – Two Golden Rules

  • √a · √b = √(ab)
  • √a / √b = √(a/b)
  • Rationalise 1/(√a + √b) → multiply by (√a − √b)/(√a − √b) (flip sign)

Series Quickies

  • 1 + 2 + … + n = n(n+1)/2
  • 1² + 2² + … + n² = n(n+1)(2n+1)/6
  • 1³ + 2³ + … + n³ = [n(n+1)/2]² (sum cubes = square of sum)

Rapid-Fire MCQs

  1. 49² − 1 equals
    A) 50 × 48 B) 48² C) 2400 D) 2500
  2. If x² − 5x + 6 = 0, roots are
    A) 2,3 B) −2,−3 C) 1,6 D) −1,−6
  3. √12 × √3 is
    A) 6 B) 36 C) 4√3 D) 9
  4. (a−b)² + 4ab equals
    A) a² + b² B) (a+b)² C) a² − b² D) 2ab
  5. 2⁵ · 2⁻³ equals
    A) 4 B) 2 C) 1/4 D) 32
  6. Sum 1 + 2 + … + 20 equals
    A) 190 B) 210 C) 200 D) 220
  7. Rationalising factor of 1/(√7 − √5) is
    A) √7 − √5 B) √7 + √5 C) √5 D) 1/√7
  8. If x + 1/x = 5, x² + 1/x² is
    A) 23 B) 25 C) 27 D) 24
  9. Discriminant of 3x² − 2x + 5 = 0 is
    A) −56 B) 64 C) 46 D) 0
  10. a³ − b³ when a = 4, b = 2 equals
    A) 56 B) 64 C) 8 D) 48
Show Answers 1-A 2-A 3-A 4-B 5-A 6-B 7-B 8-A 9-A 10-A