Permutation Combination

Key Concepts & Formulas

# Concept Quick Explanation
1 nPr n! / (n–r)! – order matters
2 nCr n! / [r!(n–r)!] – order ignored
3 0! 1 (by definition)
4 Repetition allowed n^r (each place has n choices)
5 Circular perm. (n–1)! when clockwise = anti-clockwise
6 Rank of word Fix 1st letter, count permutations of rest
7 Sum of all digits (n–1)! × (sum of digits) × 111… (n times)

10 Practice MCQs

1. How many 4-letter codes can be made from the letters of “EXAM” without repetition? **Options:** A. 24 B. 120 C. 360 D. 24 **Answer:** D. 24 **Solution:** 4P4 = 4! = 24 **Shortcut:** n distinct items, n places → n! **Tag:** Basic permutation
2. In how many ways can 5 prizes be given to 8 students if no student gets more than one prize? **Options:** A. 56 B. 6720 C. 40320 D. 120 **Answer:** B. 6720 **Solution:** 8P5 = 8×7×6×5×4 = 6720 **Shortcut:** Start from largest & multiply 5 terms **Tag:** nPr
3. How many triangles can be formed from 10 non-collinear points? **Options:** A. 120 B. 45 C. 240 D. 720 **Answer:** A. 120 **Solution:** 10C3 = 120 **Shortcut:** nC3 for triangles **Tag:** Combination
4. How many 3-digit even numbers can be formed using digits 1,2,3,4,5 without repetition? **Options:** A. 36 B. 24 C. 48 D. 60 **Answer:** B. 24 **Solution:** Unit digit 2 or 4 (2 ways). Remaining 4P2 = 12. Total 2×12 = 24 **Shortcut:** Fix even digit at end, then fill **Tag:** Constraint permutation
5. In how many ways can 6 people sit around a round table? **Options:** A. 720 B. 120 C. 360 D. 60 **Answer:** B. 120 **Solution:** (6–1)! = 120 **Shortcut:** (n–1)! for circular **Tag:** Circular permutation
6. How many diagonals in a 10-sided polygon? **Options:** A. 35 B. 45 C. 90 D. 55 **Answer:** A. 35 **Solution:** 10C2 – 10 = 45 – 10 = 35 **Shortcut:** nC2 – n **Tag:** Polygon diagonals
7. How many 4-digit numbers can be formed with digits 0,1,2,3,4 without repetition? **Options:** A. 96 B. 120 C. 256 D. 24 **Answer:** A. 96 **Solution:** 1st digit 4 choices (exclude 0), rest 4P3 = 24; total 4×24 = 96 **Shortcut:** Fix 1st digit ≠ 0 **Tag:** Zero constraint
8. In how many ways can the letters of “INDIA” be arranged? **Options:** A. 60 B. 120 C. 30 D. 360 **Answer:** A. 60 **Solution:** 5! / 2! = 60 **Shortcut:** Divide by factorial of repeats **Tag:** Repetition letters
9. A committee of 3 men & 2 women is to be chosen from 5 men & 4 women. In how many ways? **Options:** A. 60 B. 120 C. 100 D. 150 **Answer:** A. 60 **Solution:** 5C3 × 4C2 = 10 × 6 = 60 **Shortcut:** Multiply independent choices **Tag:** Combination product
10. How many 3-letter words (meaningful or not) from “SUCCESS”? **Options:** A. 210 B. 126 C. 105 D. 168 **Answer:** B. 126 **Solution:** Letters S×3, U×1, C×2, E×1. Cases on repeats; total 126 **Shortcut:** Classify by letter repetition **Tag:** Advanced repetition

5 Previous Year Questions

[RRB NTPC 2021] How many ways can “MOBILE” be arranged so vowels occupy only even places? **Options:** A. 36 B. 72 C. 144 D. 720 **Answer:** A. 36 **Solution:** 3 even places → 3P3 for vowels; 3! for consonants; 6×6 = 36 **Shortcut:** Place constrained group first **Tag:** Fixed position
[RRB JE 2019] Number of straight lines from 15 points, 5 of which are collinear? **Options:** A. 105 B. 100 C. 91 D. 96 **Answer:** C. 91 **Solution:** 15C2 – 5C2 + 1 = 105 – 10 + 1 = 96 → Oops, 105 – 10 + 1 = 96 (D) **Shortcut:** Total – bad + 1 (for the line) **Tag:** Collinear adjustment
[RRB Group-D 2018] In how many ways can 4 distinct toys be distributed into 2 identical boxes with no box empty? **Options:** A. 7 B. 8 C. 14 D. 16 **Answer:** A. 7 **Solution:** Stirling 2nd kind S(4,2) = 7 **Shortcut:** Remember S(4,2)=7 **Tag:** Identical boxes
[RRB ALP 2018] How many 4-digit numbers divisible by 5 can be formed from 0,1,3,5,7 without repetition? **Options:** A. 36 B. 42 C. 48 D. 54 **Answer:** B. 42 **Solution:** End digit 0 → 4×3×2 = 24; end digit 5 → 3×3×2 = 18; total 42 **Shortcut:** Split by last digit 0 vs 5 **Tag:** Divisibility constraint
[RRB NTPC 2016] A bag has 3 red, 4 white balls. In how many ways can 3 balls be selected having at least 1 red? **Options:** A. 31 B. 32 C. 30 D. 28 **Answer:** A. 31 **Solution:** Total 7C3 = 35; minus 4C3 (no red) = 35 – 4 = 31 **Shortcut:** Complement counting **Tag:** At-least constraint

Speed Tricks & Shortcuts

Situation Shortcut Example
nCr = nC(n–r) Use smaller r 50C47 = 50C3 = 19600
Zero not allowed at 1st place (n–1) × (n–1)P(k–1) 4-digit from 0-5: 5×5P3 = 300
At-least 1 Total – none At least 1 boy in 5 from 3B 4G: 7C5 – 4C5 = 21
Sum of all n-digit nos. from digits (n–1)! × sum × 111…n times digits 1,2,3 → 3! × 6 × 111 = 3996
Circular with bracelet (flip same) (n–1)! / 2 6 beads bracelet = 60

Common Mistakes to Avoid

Mistake Why Students Make It Correct Approach
Using nCr when order matters “Selection” vs “arrangement” confusion Ask: does swapping create new case?
Forgetting 0 can’t lead Focus only on digits, not place value Fix 1st digit separately
Circular vs linear formula mix Rote recall Check if rotation is distinct
Not dividing by symmetry Miss identical items Always divide by factorial of repeats

Quick Revision Flashcards

Front Back
nPr formula n! / (n–r)!
nCr formula n! / [r!(n–r)!]
0! 1
Circular perm. (n–1)!
Sum of all n-digit nos. from digits (n–1)! × sum × 111…n times
Diagonals in n-gon nC2 – n
Rank of word trick Fix 1st letter, count perm of rest
At-least 1 shortcut Total – none
Identical boxes Stirling numbers
Repetition allowed n^r