RRB Technician 2014 Ques 25

Question: The kinetic energy and potential energy of a particle executing simple harmonic motion will be equal when (amplitude = a) displacement is

Options:

A) $ 2,a $

B) a

C) $ a\sqrt{2} $

D) $ \frac{a}{\sqrt{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • In SHM, KE= $ =\frac{1}{2}m,(a^{2}-y^{2}){{\omega }^{2}} $ $ PE=\frac{1}{2}m{{\omega }^{2}}y^{2} $ They are equal if $ \frac{1}{2}m{{\omega }^{2}}(a^{2}-y^{2})=\frac{1}{2}m{{\omega }^{2}}y^{2} $

$ \Rightarrow $ $ a^{2}-y^{2}=y^{2} $

$ \Rightarrow $ $ 2y^{2}=a^{2} $

$ \therefore $ $ y=\frac{a}{\sqrt{2}} $